Sciforce

International Journal of Drug Delivery & Controlled Release

Journal homepage: www.sciforce.org

The rate and Extent of absorption of oral Meptazinol 200 mg on healthy volunteer

Hesham. A.Eliwa^{1*}, Ahmed adel Alaa- Eldin^{2,3} Mohamed Ibrahim Mohamed Fahmy

¹Department of Pharmacology & Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6 October City, Giza Egypt

²Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum Egypt

³Department of Pharmacology & Toxicology, Faculty of Pharmacy and drug Technology, Heliopolis University for Sustainable Development, Cairo Egypt

ARTICLE INFO

ABSTRACT

Article history: Received: 20210610 Received in revised form: 20210620 Accepted: 20210630 Available online: 20210710

Keywords: bioequivalence parameters (Cmax, AUC0-t, and AUC0-∞); Meptazinol. Meptazinol is a centrally acting analgesic belonging to the hexahydro-azepine series, which has demonstrated mixed agonist and antagonist activity at opioid receptors. Receptor binding studies have shown that although meptazinol displays only a low affinity for μ and k opioid receptor sites, it has a some what higher affinity for the subpopulation of μ sites. These binding sites also displays a high affinity for the endogenous opioid peptides, and are thought to be responsible for, among other things, analgesia, but not for the mediation of respiratory depression. A component of its analgesic action is also attributable, in mice at least, to an effect on central cholinergic transmission. In this respect it differs from all conventional analgesic drugs which have been examined (1). Based on this information this drug requires no blocking of opioid receptor during the bioequivalence study. But to achieve the highest degree of safety, close monitoring will be performed to detect the occurrence of any side effect. As well as Anarchole 50mg tablets (Naltrexone, the opioid blocker) will be available at the emergency drugs store to treat any opioid side effect.

2021 Sciforce Publications. All rights reserved.

*Corresponding author. e-mail: hesham.helmy@must.edu.eg , dr.heshamab@gmail.com

Introduction

This study was a comparative single-dose, open-label, randomized, two-treatment, two-sequence, two-period, crossover, in-vivo study to determine the bioequivalence of Meptaless 200mg Film Coated Tablet (Meptazinol 200 mg), versus Meptid 200mg Film Coated Tablets (Meptazinol 200 mg) after a single dose administration given to healthy adult volunteers under fasting conditions. The subjects who conform to the study entry criteria were dosed according to a randomization schedule. The study was designed and completed according to the good clinical and laboratory practices (2,3). To investigate single-dose bioequivalence of treatment A; Meptaless 200 mg Film Coated Tablet (Meptazinol 200 mg) and treatment B; Meptid 200 mg Film Coated Tablets (Meptazinol 200 mg) given to healthy adult volunteers under fasting conditions. For the ln-transformed ratio (test product/reference product) for the bioequivalence parameters (Cmax, AUC0-t, and AUC0-∞) while other pharmacokinetic parameters of ke, t1/2, Tmax, and (AUC0t/AUC0- ∞) % were reported. The influence of sequence, product, and period effect were tested by ANOVA.

Ethics Considerations

This research will be carried out in accordance with conditions stipulated by international clinical research guidelines and the principles enunciated in the Declaration of Helsinki resolved in Helsinki in 1964s and amended in Scotland, 2000; and the ICH harmonized tripartite guideline regarding Goo Clinical Practice (GCP) adopted by the European Agency for the Evaluation of Medicinal Products (5). In addition, all local regulatory requirements will be adhered to, in particular those which afford greater ion to the study of the participants

1. Dosage forms and strengths

1.1. Methods and Procedures

www.sciforce.org

On study day 1 of each study period, the study drugs were administered according to a randomization plan.

Treatment A: One Meptaless 200 mg Film Coated Tablet taken (Meptazinol 200 mg) with 240 mL of water (measured with a 300-mL cylinder) at room temperature.

Subjects Assignment in the Study

Twenty-four volunteering subjects are required to fully complete the two periods of the study, which is expected to be sufficient to obtain a statistical power adequate for the

Evaluation by comparing the bioavailability and therefore, the bioequivalence of two different AIM of the Study formulations of Meptazinol after a single oral dose administration, under fasting conditions. Eligible subjects received test and reference products as a single oral dose on two different occasions. Blood samples were collected at zero (0) time Pre-dose, 0.- 24 hours after dosing. Methodology Meptazinol concentrations in blood samples were determined by a validated LC.MS.MS assay method. The statistical analysis was performed according to the method of Schuirmann (1987) *. The assessment of bioequivalence between the test and the reference products was based on the ratios of the mean pharmacokinetic parameter .The Bioequivalence (BE) was concluded if either tail **Statistical Methods** probability did not exceed the 90 % confidence limit and was completely contained in the 0.80 -1.25 ranges for AUC_{0.4}, AUC_{0. ∞} and in the 0.80 -1.25 range for C_{max}. Analysis of variance (ANOVA) is performed on pharmacokinetic parameters AUCs, T_{max} & C_{max}. Oral administration of Test Product: Meptaless (Meptazinol 200 mg) to healthy volunteer showed No effect on blood pressure as compared by the Reference Product : Meptid(**Results** Meptazinol 200 mg), which increase the blood pressure by 3.23 %. The Test product, Meptaless 200mg Film Coated Tablet by Penta pharma Egypt is bioequivalent to Conclusion the reference drug, Meptid®200mg Film Coated Tablets

Assessment of average bioequivalence. The subjects will be selected, from the Egyptian population, healthy volunteers, 18-55 years of age, weighing at least 45 kg and their body mass index (BMI) of 18 - 30 (inclusive both) kg/m2.

Disposition of Volunteers

Healthy subjects were recruited according to the selection criteria described in the study protocol and volunteered for months prior to the first study drug administration of study period I)

- Number of Screened Volunteers 33
- Number of Enrolled Volunteers 33
- •Number of volunteers who completed period I 33

participation in the study. All participating subjects were treated as a single group.

Each subject was examined thoroughly during screening procedure (the screening time being set to be not more than two months prior to the first study drug administration of study period I)months prior to the first study drug administration of study period I)

•Number of volunteers who completed period II 31

- Number of Withdrawn Volunteers 2*
- Number of Excluded Volunteers 1**
 - 33
 - 33

Treatment B: One Meptid 200 mg Film Coated Tablets (Meptazinol 200 mg) taken with 240 mL of water (measured with a 300-mL cylinder) at room temperature.

www.sciforce.org

1.2. Dietary Restrictions, Standardized Diet and Fluid Intake

No consumption of alcohol was permitted for the subjects 48 hours prior to the study's drugs administration until the collection of the last sample of the respective study period. No consumption of any beverages or foods containing methylxanthines, e.g., caffeine (coffee, tea, cola, cocoa, chocolate, etc.) was permitted for the subjects 12 hours prior to the study's drugs administration until the collection of last blood sample of the respective study period (7).

1.3. Collection and Handling of Blood Samples for Analysis:

In the morning of study day 1 of each study period and before study's drugs administration, a cannula was inserted into the subject's forearm vein and it remained there until the last blood sample was collected.

The volume of blood taken for the determination of Meptazinol in plasma was 5 mL per sample. The following blood samples for the analysis of Meptazinol in plasma were collected: at the following intervals: 0(pre-dose) 0.16, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 8, 10, 12 and 24 hours after dosing. The number of blood collections for drug analysis was 18 samples in each study period.

Blood samples were collected into tubes containing heparin as an anticoagulant slightly shaken and centrifuged at approximately 3500 rpm for 10 minutes (8).

After centrifugation, plasma samples were transferred directly into a 5-mL plastic tube. These samples were immediately stored at the study site in an ultradeep freezer at a nominal temperature of -80 °C.

2. Bio-analytical Drug Determination Methodology:

Meptazinol in human plasma. Samples from the subjects (who completed all periods of the study) were analyzed (9). The bio-analytical method was validated according to the international guidelines. Details of the validation of the assay procedure are given in section 5 "Bio-analytical Method & Validation" (10,11,12).

3. Pharmacokinetic Calculations

The pharmacokinetic parameters of Meptazinol were estimated using standard non-compartmental methods (4).

The maximal plasma concentration was taken directly from the measured data. The area under the plasma concentration– time curve (AUCt) was calculated from measured data points from the time of administration to the time of last quantifiable concentration (Clast) by the linear trapezoidal rule (13,14).

The area under the plasma concentration-time curve extrapolated to infinity $(AUC\infty)$ was calculated according to the following formula:

AUC0- ∞ = AUC0-t + Clast / [ln (2)/t¹/₂], where Clast is the last quantifiable concentration.

The ratio AUC0-t/AUC0/- ∞ as a percent was determined as an indicator for the adequacy of sampling time.

The elimination half-life $t\frac{1}{2}$ was calculated as $t\frac{1}{2} = \ln (2)/(-b)$ where b was obtained as the slope of the linear regression of the ln-transformed plasma concentrations versus time in the terminal period of the plasma curve.

4. Statistical Analysis

The statistical analysis was performed according to the method of Schuirmann (1987) * (6). The assessment of bioequivalence between the test and the reference products was based on the ratios of the mean pharmacokinetic parameter AUC0-t, AUC0- ∞ , Cmax, Tmax & t1/2. The Bioequivalence (BE) was concluded if either tail probability did not exceed the 90 % confidence limit and was completely contained in the 0.80 - 1.25 ranges for AUC0-t, AUC0- ∞ and in the 0.80 -1.25 range for Cmax. Analysis of variance (ANOVA) is performed on pharmacokinetic parameters AUCs, Tmax & Cmax.

Statistical analysis was performed by a validated Kinetica version 5.1 software.

4.1 .Descriptive Statistics

Descriptive Statistics, including the means, standard deviations and pharmacokinetic parameters, arithmetic means, standard deviations, coefficient of variation, geometric means and ratio of means shall be reported.

4.2. Analyses of Variance (ANOVA)

Analyses of variance will be performed on the lntransformed pharmacokinetics parameters AUC0- ∞ , AUC0-t and Cmax. The analysis of variance model will include sequence; subjects nested within sequence, period and drug formulation as factors, employing 5% level of significance of the sequence effect will be tested using the subjects nested within sequence, as the error term.

4.3. Wilcoxon test

A Wilcoxon signed-rank test (aka Wilcoxon matched-pairs test) was used to determine if there is a significant difference between the Tmax values of the test product and the reference product.

5. Confidence Intervals and Bioequivalence Evaluation

Consistent with two one-sided tests for bioequivalence, 90% confidence intervals for the difference between drug formulation means will be calculated for the ln-transformed parameters AUC0-t, AUC0- ∞ and Cmax.

The confidence intervals will be expressed as a percentage relative to the means of reference formulation. The geometric mean values for the (test/reference) ratios of AUC0-t, AUC0- ∞ and Cmax will be reported to define the point estimate. The confidence intervals of ln-transformed (test/reference) ratios for AUC0-t, AUC0- ∞ and Cmax are to be within 80.00-125.00%.

www.sciforce.org

Reagents, Chemicals & Standards:

- Meptazinol hydrochloride working standard (potency 100.1%, loss on drying: 0.2%)

- Paracetamol working standard (potency 99.8%, water content; 0.20%)

- Water for chromatography (Sharlau, Spain)

- Isopropanol HPLC grade (fisher chemicals), Acetonitrile, HPLC grade (Sigma Aldrich Chemie GmbH, Steinheim-Germany)

- Butyl methyl ether, (M-Tedia)

- Blank plasma obtained from the Holding Company for Biological Products & Vaccines (VACSERA), Giza, Egypt

Discussion

Bioequivalence evaluation is usually carried out by comparing the in vivo rate and extent of drug absorption of a test and reference formulation in healthy subjects. Study participants received test and reference products on separate occasions, in single dose, with random assignment to the three possible sequences of product administration.

Plasma samples were analyzed for drug concentrations, and pharmacokinetic parameters were obtained from the resulting concentration-time curves. These pharmacokinetic parameters were then analyzed statistically to determine whether the test and reference products yielded comparable values. Standard statistical methodology based on the two one-sided tests procedure to determine whether average values for pharmacokinetic parameters measured after administration of the test and reference products are comparable. This procedure involves the calculation of a 90% confidence interval for the ratio (or difference) between the test and reference product pharmacokinetic variable averages. The limits of the observed confidence intervals were within a predetermined range for the ratio (or difference) of the product averages. The determination of the confidence interval range and the statistical level of significance based on parametric (normal theory) standard non-compartmental procedures was employed for the analysis of pharmacokinetic data derived from *in vivo* bioequivalence studies. ANOVA was performed on the pharmacokinetic parameters to assess the effect of variables [subject (sequence), subject, period, and formulation] on the study outcome. On the basis of these considerations, a singledose, two-treatment, two-sequence, two-period, crossover bioequivalence study on healthy normal subjects was adopted.

Statistical results : Tables (1-11)

Table (1): Adverse Effect of oral administration of bothTest Product: Meptaless (Meptazinol 200 mg) and theReference Product(Meptazinol 200 mg).

Oral administration of Test Product: Meptaless to healthy volunteer showed No effect on blood pressure as compared by the Reference Product : Meptid ,which increase the blood pressure by 3.23 %.

Oral administration of both Test Product: Meptaless and the Reference Product : Meptid to healthy volunteer showed No cardiovascular side

effect .

www.sciforce.org

	Reported Incidence by Treatment Groups	
Studies Body System / Adverse Event	Fasted Bioe	quivalence Study
	Test	Reference
Body as a whole	0.00%	0.00%
Dizziness	3.23%	0.00%
Headache	6.67%	3.23%
Nausea	3.23%	0.00%
Vomiting.	3.23%	0.00%
Cardiovascular	0.00%	0.00%
Hypotension	0.00%	0.00%
Hypertension	0.00%	3.23%
Gastrointestinal	9.68%	0.00%
Abdominal pain	0.00%	0.00%
Allergic reaction	0.00%	0.00%
Other organ systems	0.00%	0.00%
Total %	26.04%	6.46%

A- Plasma Concentration-Time Profiles for Each Volunteer

Table (2): Plasma concentration levels of Meptazinol (ng/mL) following administration of single oral dose of Treatment (B) reference product Meptid 200mg Film Coated Tablets

Note: letter M indicates missed samples

B- Tables of Pharmacokinetic Parameters

Table 3: Pharmacokinetic parameters of Meptazinol following administration of single oral dose of test product (A) Meptaless200mg Film Coated Tablet to 30 volunteers

	0	0.166667	0.25	0.5	0.75	1	1.25	1.5	1.75	2	2.5	3	4	6	8	10	12	24
1	0	6.19	20	23.1	70.9	56	45.9	52.7	41.2	37	55.3	42	31.2	30.6	34	17.9	7.77	16
2	0	48.4	7.35	8.69	51.3	42.1	39.3	41.1	61.6	34	63.6	43	19.7	13.7	10.5	7.96	12.4	6.24
3	0	11.6	9.8	65.7	46.1	31	29.7	37.2	23.2	18.9	14.8	23.6	13.5	9.88	17.8	8.95	5.85	6.71
4	0	0	8.14	14.8	25.6	31.8	25.4	39.3	24.3	23.5	19.5	19.6	11.3	8.99	9.82	10.2	5.61	0
5	0	4.59	5.33	27.5	19.7	13	38.4	13.1	17	16.9	9.69	10.2	8.9	6.9	6.27	7.65	2.13	6.92
6	0	29.7	59.7	14.9	4.16	3.59	3.59	15.1	7.48	11.2	18	14	9.97	7.46	5.97	4.71	6.11	m
7	0	5.74	43.8	19	32.9	43.2	35.9	30.1	20.8	15.7	30.5	16.7	20.3	10.8	19.6	8.89	22.9	7.9
8	0	17.7	14.8	5.19	13	33.4	27	23.7	20.2	21.5	66.4	22.3	13.8	7.33	10.4	5.31	15.3	19.3
9	0	4.92	6.67	21.4	19.2	37.9	35.1	41.2	43.1	41.4	35.9	33.7	18.7	8.46	8.15	7.9	14.9	15.9
10	0	5.53	6.53	14.8	25.9	33.5	27.3	28.8	18.8	20	14.3	13.3	10.4	8.83	8.41	6.2	7.73	5.15
11	0	13.2	24.2	22.9	71	72.6	50.8	44.5	36.5	30.8	31.8	34.1	25.9	42.4	16	9.23	8.67	8.3
12	0	8.3	20	34.2	19.7	24.9	26.5	23.5	28.6	17.9	16.7	13.9	12.1	9.92	5.39	6.64	7.82	5.1
13	0	0	21.8	16.6	22.2	28.1	33.2	39.7	43.6	39.1	20.3	17.9	11.3	11.2	8.43	5.78	6.59	5.2
14	0	7.24	8.62	14.1	27.8	43.5	41.9	44.7	49	43.2	47.8	23.6	23	10.1	8.34	7.72	20.1	10.
15	0	0	0	2.51	m	30.2	12.9	12.9	10	m	9.15	8.83	2.68	0	3.65	0	m	m
17	0	0	5.22	10	20.1	13.7	10.1	7.78	7.1	8.24	4.97	4.84	5.62	0	0	0	0	0
18	0	20	13.2	34.1	15.9	15.6	23.3	21.8	54.3	56.6	40.9	36.3	27.1	15.9	19	12.1	6.1	5.6
19	0	6.96	18	15.5	26.1	43.6	41.2	46.2	51.2	36.8	59.7	27.3	17.2	11.7	17.2	12.7	8.29	14.
20	0	15.8	13.9	14.1	26	31.7	39.8	31.6	31.4	24.3	20.6	15.9	14.6	10.2	12.2	7.65	6.98	14.
21	0	2.53	6.33	54.6	66.7	62.5	73.6	20	36.5	32.7	32.1	33.2	16	9.09	5.23	9.48	0	m
22	0	0	0	14.8	56.4	25.7	20	25	22.3	47.3	16.9	11.3	10.7	4.23	5.2	0	4.37	6.4
23	0	4.68	58.7	11.5	68.1	17.7	17.8	11.4	4.48	19.9	11	15	29.9	7.51	1.65	0	0	0
24	0	0	0	10.1	16.2	24.1	22.7	19.8	16.2	14.9	18.3	m	6.61	0	0	0	0	0
25	0	0	23.3	48.1	42.7	57.6	48.9	40.3	32.4	30.3	16.2	16.3	9.91	0	1.66	0	0	0
26	0	0	0	12.4	17.1	22.1	24.2	22.1	15.9	4.09	10.5	10.3	4.33	3.82	4.86	6.8	0	0
27	0	0	0	23.4	18.1	20.5	26	18.6	17.7	22.7	15.7	11.1	6.76	1.79	0	0	9.32	0
28	0	0	32.1	43.2	36.6	23.8	28.6	23.7	24.2	24.8	16.1	13.2	6.56	3.39	0	0	0	0
29	0	0	0	0	7.55	8.71	23.6	34.9	52.9	29.3	22.8	19.9	14.7	6.87	12	0	0	0
30	0	0	3.64	8.73	7.01	9.11	10.3	8.11	14.6	5.13	7.01	3.43	0	0	0	0	9.12	0
33	0	12	15.3	32.7	38.3	47.9	53.1	41.4	44.5	39.8	29.8	26.7	9.92	9.52	3.29	2.14	3.6	0

www.sciforce.org

Vol no.	Period	Cmax (ng/mL)	Tmax (hr)	AUC0-t (ng.hr/mL)	AUCExt (ng.hr/mL)	AUC0-∞ (ng.hr/mL)	% AUCExt	Ke (hr- 1)	t1/2 (hr)
1	II	54.5000	1.5000	182.3970	30.9953	213.3920	14.5251	0.1567	4.4222
2	Ι	65.1000	1.5000	320.6940	4.7920	325.4860	1.4723	0.1650	4.2013
3	Ι	40.1000	0.5000	155.5170	33.8024	189.3200	17.8547	0.1537	4.5094
4	II	44.2000	1.5000	342.1930	9.0297	351.2230	2.5709	0.1265	5.4799
5	Ι	26.2000	4.0000	143.0250	25.1798	168.2040	14.9698	0.1660	4.1762
6	II	23.7000	1.0000	94.9746	0.0673	95.0419	0.0708	0.2948	2.3514
7	II	40.5000	0.7500	454.9070	21.3082	476.2150	4.4745	0.1114	6.2236
8	Ι	80.2000	1.7500	602.1470	0.0295	602.1770	0.0049	0.3576	1.9385
9	II	67.9000	1.2500	322.4270	4.7300	327.1570	1.4458	0.1737	3.9910
10	Ι	27.9000	1.7500	162.6880	6.9224	169.6100	4.0814	0.1368	5.0687
11	II	68.7000	0.7500	305.6910	1.9616	307.6520	0.6376	0.2308	3.0034
12	Ι	31.7000	1.7500	255.5670	10.5101	266.0780	3.9500	0.1434	4.8350
13	Ι	54.8000	1.5000	269.8070	11.0582	280.8660	3.9372	0.1251	5.5429
14	Ι	53.7000	1.2500	324.8560	6.3529	331.2090	1.9181	0.1598	4.3364
15	II	21.4000	0.2500	24.4029	3.8449	28.2478	13.6114	0.5861	1.1826
17	Ι	15.9000	2.0000	40.2775	6.7013	46.9788	14.2644	0.3240	2.1396
18	Ι	76.8000	1.7500	655.0670	23.4163	678.4830	3.4513	0.1284	5.4002
19	II	65.0000	2.0000	292.2500	84.1414	376.3910	22.3548	0.1249	5.5487
20	II	21.3000	2.0000	307.3190	75.7458	383.0650	19.7736	0.0779	8.9009
21	II	39.1000	1.5000	112.5610	5.5916	118.1520	4.7326	0.3855	1.7980
22	Ι	39.8000	1.5000	166.6160	6.5299	173.1460	3.7713	0.1286	5.3887
23	II	35.1000	0.5000	159.9510	56.6609	216.6120	26.1578	0.0894	7.7510
24	Ι	48.3000	1.0000	104.8910	5.8482	110.7390	5.2811	0.5403	1.2829
25	II	42.6000	1.2500	108.9400	17.1301	126.0700	13.5878	0.2164	3.2031
26	Ι	73.8000	1.0000	136.2350	5.9811	142.2160	4.2056	0.2924	2.3706
27	Ι	49.3000	1.2500	107.1620	20.9319	128.0940	16.3410	0.2562	2.7050
28	II	26.1000	0.7500	59.9025	10.0887	69.9912	14.4142	0.3406	2.0348
29	Ι	62.4000	0.7500	253.2050	4.8420	258.0470	1.8764	0.3723	1.8618
30	II	48.9000	1.7500	75.9933	38.7098	114.7030	33.7478	0.1200	5.7773
33	II	72.7000	1.7500	134.4550	10.1462	144.6010	7.0167	0.2195	3.1578
avera	age	47.2567	1.3917	222.5373	18.1016	240.6389	9.2167	0.2235	4.0194
SD		18.2604	0.6791	150.5425	20.8573	153.0769	8.5578	0.1264	1.8726
Cv%		38.6410	48.7978	67.6482	115.2231	63.6127	92.8514	56.5447	46.5895

www.sciforce.org

Table (4) : Pharmacokinetic parameters of Meptazinol following administration of single oral dose of reference product (B) Meptid

 200mg Film Coated Tablets 30 volunteers

Vol no.	Period	C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-t} (ng.hr/mL)	AUC _{Ext} (ng.hr/mL)	AUC _{0-∞} (ng.hr/mL)	% AUC _{Ext}	$\mathbf{K}_{\mathbf{e}}$ (hr ⁻¹)	t _{1/2} (hr)
1	Ι	70.9000	0.7500	511.7720	0.2595	512.0320	0.0507	0.3690	1.8783
2	II	63.6000	2.5000	363.2070	4.9844	368.1920	1.3537	0.1748	3.9644
3	II	65.7000	0.5000	268.2160	0.7146	268.9300	0.2657	0.2782	2.4916
4	Ι	39.3000	1.5000	155.4990	48.1395	203.6390	23.6397	0.1231	5.6310
5	II	38.4000	1.2500	163.8900	4.2468	168.1360	2.5258	0.1411	4.9139
6	Ι	59.7000	0.2500	106.9120	18.4927	125.4050	14.7464	0.1667	4.1573
7	Ι	43.8000	0.2500	404.0650	0.5981	404.6630	0.1478	0.2407	2.8798
8	II	66.4000	2.5000	382.9690	9.6729	392.6420	2.4635	0.1364	5.0802
9	Ι	43.1000	1.7500	386.7220	7.4616	394.1830	1.8929	0.1522	4.5554
10	II	33.5000	1.0000	211.1700	14.9972	226.1670	6.6310	0.1014	6.8349
11	Ι	72.6000	1.0000	417.9430	10.0038	427.9470	2.3376	0.1487	4.6614
12	II	34.2000	0.5000	217.0780	0.9810	218.0590	0.4499	0.2087	3.3211
13	II	43.6000	1.7500	233.0610	10.2419	243.3030	4.2095	0.1220	5.6806
14	II	49.0000	1.7500	408.3120	10.4242	418.7360	2.4895	0.1424	4.8677
15	Ι	30.2000	1.0000	43.7275	13.1431	56.8706	23.1106	0.2077	3.3377
17	II	20.1000	0.7500	30.0800	10.2158	40.2958	25.3521	0.3756	1.8453
18	II	56.6000	2.0000	326.3400	0.7389	327.0790	0.2259	0.2840	2.4403
19	Ι	59.7000	2.5000	379.1750	5.1925	384.3670	1.3509	0.1825	3.7988
20	Ι	39.8000	1.2500	295.3390	15.0618	310.4010	4.8524	0.1125	6.1640
21	Ι	73.6000	1.2500	195.1790	24.5635	219.7420	11.1783	0.2205	3.1439
22	II	56.4000	0.7500	180.1530	1.2900	181.4420	0.7110	0.1975	3.5094
23	Ι	68.1000	0.7500	128.8460	2.3295	131.1750	1.7759	0.7243	0.9570
24	II	24.1000	1.0000	56.1200	17.9671	74.0871	24.2514	0.4053	1.7102
25	Ι	57.6000	1.0000	119.5960	3.6390	123.2350	2.9529	0.4540	1.5269
26	II	24.2000	1.2500	73.6137	3.0834	76.6972	4.0202	0.3120	2.2216
27	II	26.0000	1.2500	78.8025	33.9149	112.7170	30.0884	0.1237	5.6023
28	Ι	43.2000	0.5000	90.8550	6.6259	97.4809	6.7971	0.4716	1.4697
29	II	52.9000	1.7500	117.0180	32.2864	149.3040	21.6246	0.2286	3.0324
30	Ι	14.6000	1.7500	32.1929	0.0016	32.1945	0.0048	0.8749	0.7923
33	Ι	53.1000	1.2500	166.7550	5.6084	172.3630	3.2538	0.2992	2.3164
avera	ıge	47.4667	1.2417	218.1536	10.5627	228.7162	7.4918	0.2660	3.4929
SD		16.5221	0.6208	135.9857	11.2551	133.1687	9.2333	0.1762	1.6109
Cv%		34.8078	49.9944	62.3348	106.5559	58.2244	123.2448	66.2386	46.1190

Table 5: Plasma concentration Average \pm SD (ng/mL) of Meptazinol following oral administration of Treatment (A) test productMeptaless 200 mg Film Coated Tablet and Treatment

(B) reference product Meptid 200 mg Film Coated Tablets 30 volunteers

Time (hr.)	Meptaless 200 n	ng Film Coated Tablet	Meptid 200 mg Film Coated Tablets			
	Average	± SD	Average	± SD		
0.0	0.0000	0.0000	0.0000	0.0000		
0.17	8.6643	11.3423	7.5027	10.6623		
0.25	12.8762	9.7194	14.8810	15.9205		
0.5	17.3993	11.8776	21.2873	15.4597		
0.75	24.4883	16.8128	31.4593	19.8467		
1.0	30.8927	17.4132	31.6370	16.7173		
1.25	28.8590	14.8282	31.2030	14.7255		
1.5	34.7170	15.3844	28.6763	12.6298		
1.75	31.7847	18.4767	29.0353	15.7455		
2.0	25.4193	12.0150	26.4814	12.9152		
2.5	21.6323	10.3329	25.8773	17.3481		
3.0	18.7353	10.8750	20.0517	10.6540		
4.0	15.6960	9.2060	13.7553	7.9191		
6.0	10.7280	9.9432	9.0197	8.7620		
8.0	9.4433	8.8248	8.5007	7.6544		
10.0	7.1259	6.9964	5.5303	4.8007		
12.0	6.9670	7.6268	6.6090	6.0822		
24.0	4.9643	6.7238	5.7356	6.0407		

www.sciforce.org

Table (6): Mean values of the pharmacokinetic parameters of Meptazinol derived from the plasma concentration-time profiles of test (A) product Meptaless 200mg Film Coated Tablet and reference (B) Product Meptid 200mg Film Coated Tablets following single oral administration of 200 mg Meptazinol to 30 healthy volunteers

	Test A			Reference B			
	Average	SD	CV%	Average	SD	CV%	
Cmax (ng/mL)	47.2567	18.2604	38.6410	47.4667	16.5221	34.8078	
Tmax (hr)	1.3917	0.6791	48.7978	1.2417	0.6208	49.9944	
AUC0-t (ng.hr/mL)	222.5373	150.5425	67.6482	218.1536	135.9857	62.3348	
AUCExt (ng.hr/mL)	18.1016	20.8573	115.2231	10.5627	11.2551	106.5559	
AUC0-∞ (ng.hr/mL)	240.6389	153.0769	63.6127	228.7162	133.1687	58.2244	
AUCExt/ AUC0-∞	9.2167	8.5578	92.8514	7.4918	9.2333	123.2448	
Ke (hr-1)	0.2235	0.1264	56.5447	0.2660	0.1762	66.2386	
t1/2 (hr)	4.0194	1.8726	46.5895	3.4929	1.6109	46.1190	

Table (7): 90% Confidence Interval & Point Estimate for Cmax, AUC0-t & AUC0- ∞

	Point Estimate	Lower Confidence Limit	Upper Confidence Limit
C _{max} (ng/mL)	98.42%	84.41%	114.76%
AUC _{0-t} (ng.hr/mL)	103.23%	89.82%	118.66%
AUC _{0-∞} (ng.hr/mL)	105.13%	91.3%	121.06%

C-ANOVA Tables for the Pharmacokinetic Parameters

Table (8): ANOVA table with Confidence Interval for Ln Cmax

SOURCE	D.F	SS	MS	F	p
Period	1	0.259501	0.259501	2.12291	0.1562
Subject (Seq)	28	6.89307	0.246181	2.01394	0.03455
Formulation	1	0.00377699	0.00377699	0.0308986	0.8617
Sequence	1	0.0162592	0.0162592	0.133012	0.7181
Error	28	3.42267	0.122238		A
Total	59	10.5953		-	

SOURCE	D.F	SS	MS	F	p
Period	1	0.328507	0.328507	3.27044	0.08129
Subject (Seq)	28	31.5735	1.12763	11.226	4.296e-009
Formulation	1	0.0152352	0.0152352	0.151673	0.6999
Sequence	1	0.134758	0.134758	1.34158	0.2565
Error	28	2.81253	0.100447		
Total	59	34.8645			

 Table (9):
 ANOVA table with Confidence Interval for Ln AUC0-t

 Table (10):
 ANOVA table with Confidence Interval for Ln AUC0-inf

SOURCE	D.F	SS	MS	F	p
Period	1	0.161075	0.161075	1.56185	0.2217
Subject (Seq)	28	27.4746	0.981235	9.51448	2.978e-008
Formulation	1	0.0375467	0.0375467	0.364069	0.5511
Sequence	1	0.0831092	0.0831092	0.805863	0.377
Error	28	2.88766	0.103131		
Total	59	30.644		-	

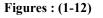
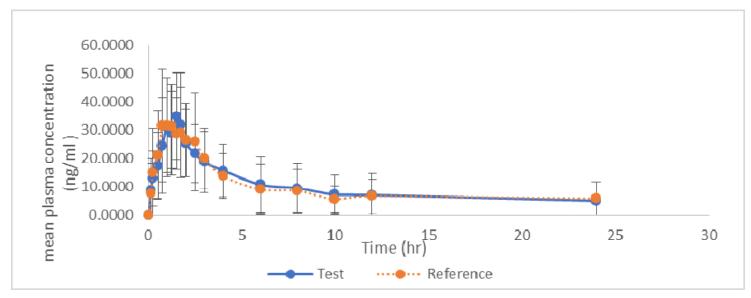
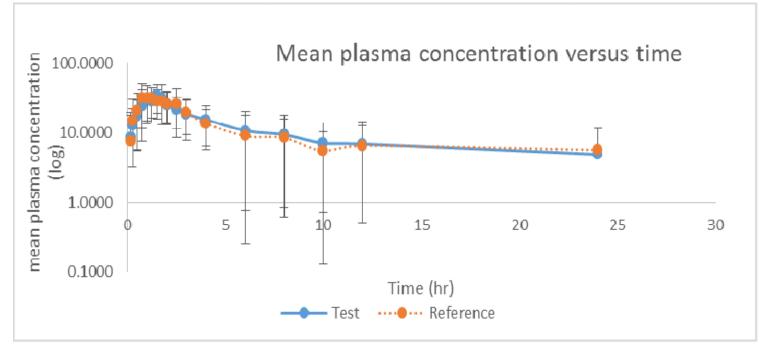

Wilcoxon T test:
Difference between the two groups:
delta (1) = -0.75
$\frac{delta(2)}{delta(2) = 1}$
$\frac{delta(2) - 1}{delta(3) = 0}$
$\frac{d}{delta(4) = 0}$
delta(5) = -2.75
delta(6) = -0.75
delta(7) = -0.5
delta(8) = 0.75
delta(9) = 0.5
delta(10) = -0.75
$\frac{delta(10) = 0.75}{delta(11) = 0.25}$
delta(12) = -1.25
delta(13) = 0.25
delta (14) = 0.5
delta (15) = 0.25
delta (16) = 0.5
delta(17) = -0.75
delta (18) = -1.25
delta(19) = -0.75
delta $(20) = 0.25$
delta(21) = 0
delta (22) = -0.25
delta (23) = 0.25
delta (24) = 0
delta (25) = -0.25
delta (26) = 1
delta (27) = 0
delta (28) = -0.5
delta (29) = 0.75
delta (30) = -0.25
M = 192.5; P = 132.5; Sigma P = 1381.25; Epsilon P = 0.807207

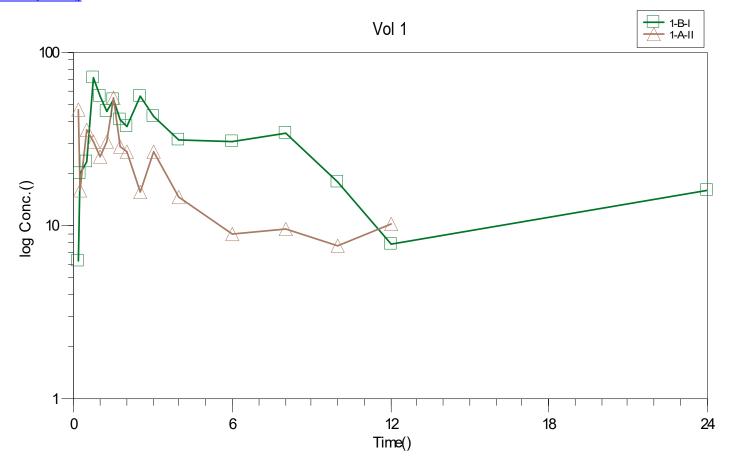
Table (11): Wilcoxon T test (Non-parametric test for T_{max})

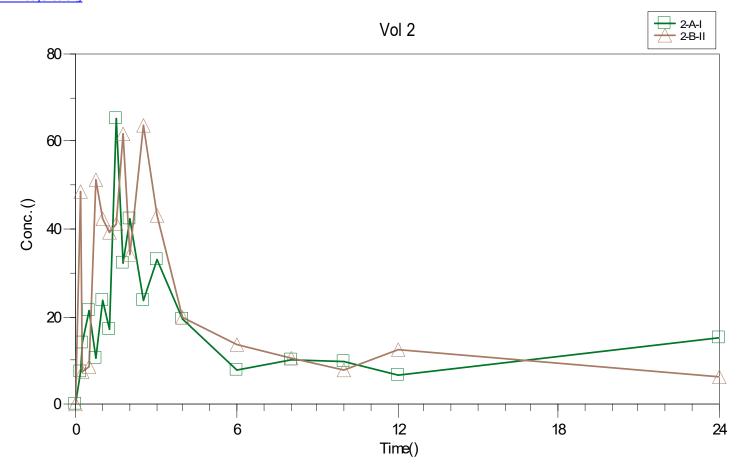
Epsilon Paired Table > 0.05: 0.41955>0.05

www.sciforce.org

The difference is not significant.


Figure 1: Mean plasma concentration vs time profile for Meptazinol after administration of an oral single-dose of 200 mg Meptazinol of the test product (Meptaless 200mg Film Coated Tablet) and the reference product (Meptid 200 Film Coated Tablets)


Figure 2 : Logarithmic mean plasma concentration vs time profile for Meptazinol after administration of an oral single-dose of 200 mg Meptazinol of the test product (Meptaless 200mg Film Coated Tablet) and the reference product (Meptid 200 Film Coated Tablets)

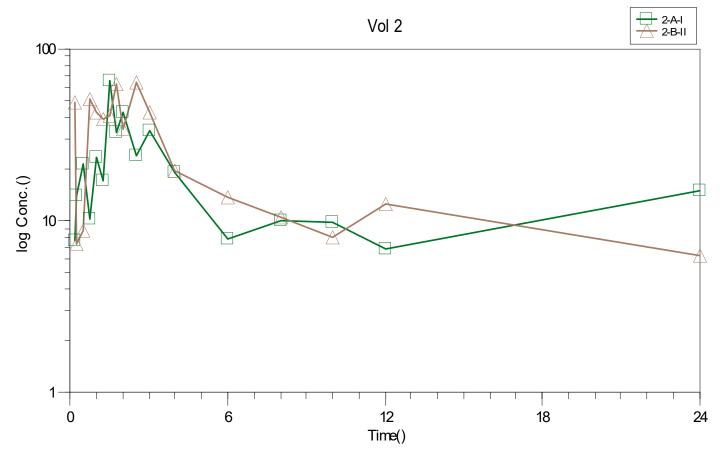

Figure 3: Concentration (ng/ml) versus time (hours) plot of volunteer 1 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

Figure 4: log concentration (ng/ml) versus time (hours) plot of volunteer 1 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

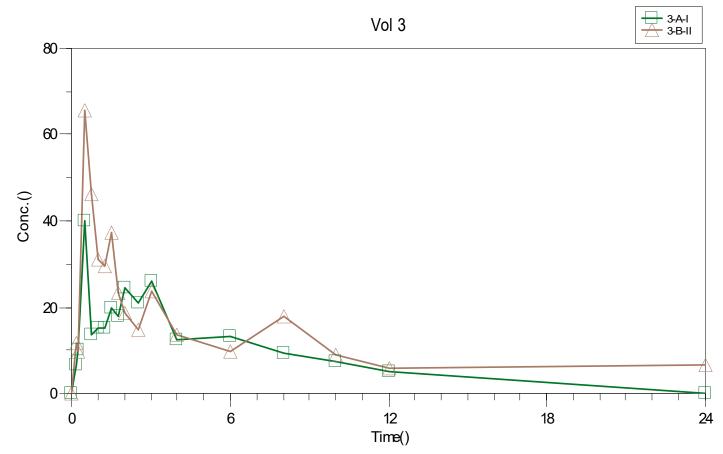


Figure 5: Concentration (ng/ml) versus time (hours) plot of volunteer 2 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

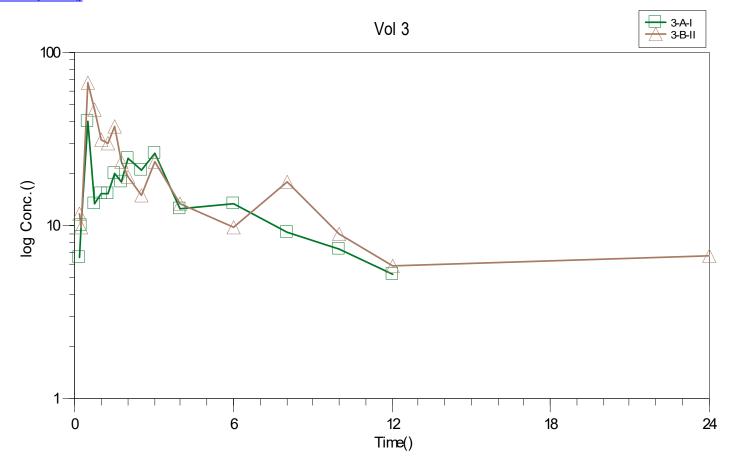
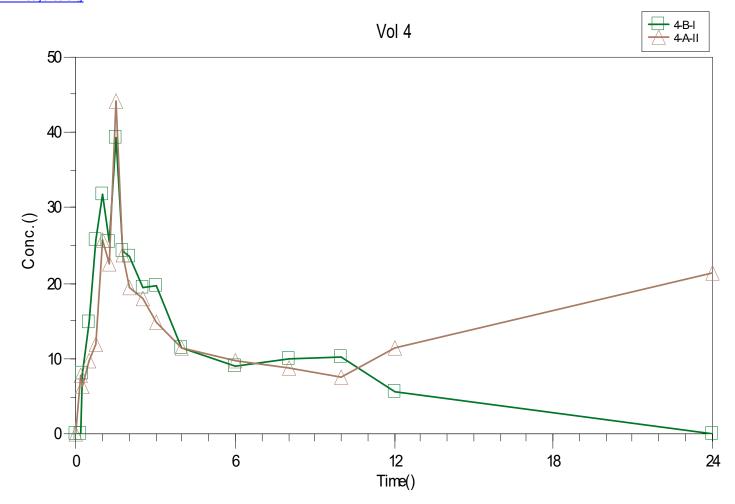
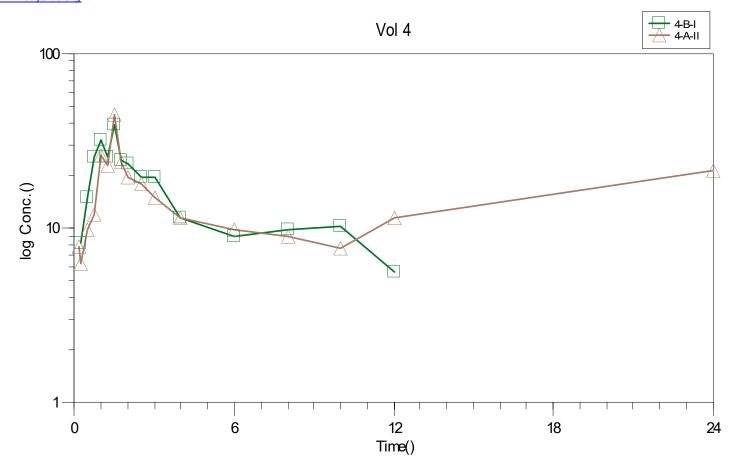


Figure 6: Log concentration (ng/ml) versus time (hours) plot of volunteer 2 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets




Figure 7: Concentration (ng/ml) versus time (hours) plot of volunteer 3 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

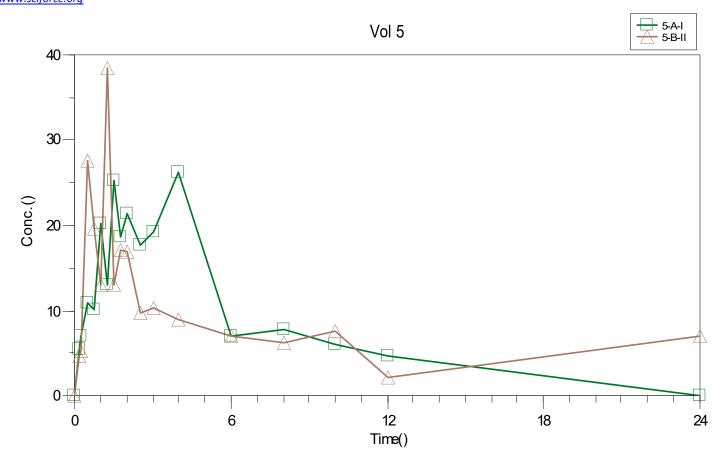

Figure 8 : Log concentration (ng/ml) versus time (hours) plot of volunteer 3 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

Figure 9: Concentration (ng/ml) versus time (hours) plot of volunteer 4 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

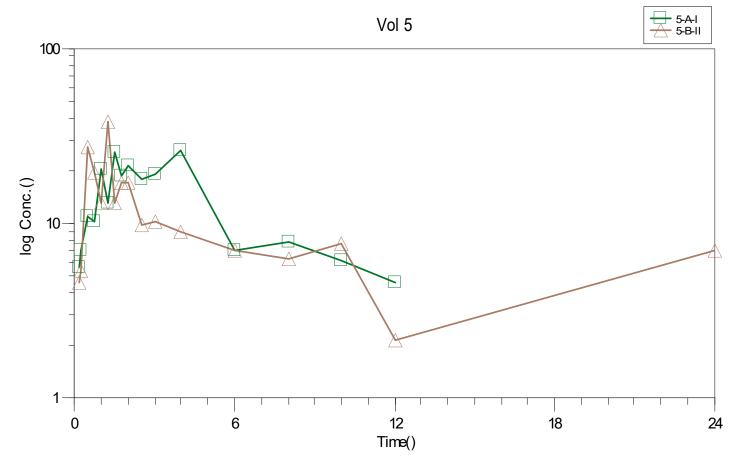


Figure 10: Log concentration (ng/ml) versus time (hours) plot of volunteer 4 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

Figure 11: Concentration (ng/ml) versus time (hours) plot of volunteer 5 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

Figure 12: Log concentration (ng/ml) versus time (hours) plot of volunteer 5 after single dose drug administration of test (A) Meptaless 200 mg Film coated tablets and reference (B) Meptid 200 mg Film coated tablets

Conclusion

Bioequivalence could be demonstrated for Meptazinol within the prescribed 90% confidence interval of 80.00% to 125.00% for AUC0-t and AUC0- ∞ and for Cmax to be within 80.00% to 125.00% with respect to the parametric method on Intransformed data.

Oral administration of Test Product: Meptaless (Meptazinol 200 mg) to healthy volunteer showed No effect on blood pressure as compared by the Reference Product : Meptid(Meptazinol 200 mg) ,which increase the blood pressure by 3.23 %.

Oral administration of both Test Product: Meptaless (Meptazinol 200 mg) and the Reference Product : Meptid(Meptazinol 200 mg) to healthy volunteer showed No effect on cardiovascular .

The test product, Meptaless 200mg Film Coated, investigated in this study was shown to be bioequivalent with the reference product; Meptid 200 mg Film Coated Tablets .

Plasma levels may be used as surrogate parameters for therapeutic response.

Therefore, the data obtained in this study prove, by appropriate statistical methods, the essential similarity of plasma levels of Meptazinol from the test product Meptaless 200 mg Film Coated Tablet and from the reference product Meptid 200 mg Film Coated Tablets suggesting equal clinical efficacy of these two products.

The product, Meptaless 200mg Film Coated Tablet , may be used interchangeably with the reference product Meptid 200mg Film Coated Tablets . That was shown the tested product has an acceptable therapeutic efficacy.

References

- 1. Goldstuck ND.; Ward PJ. Treatment of pain following IUD insertion with meptazinol--a new centrally acting analgesic. *Contracept Deliv Syst.* 1983, 4, 33-37.
- Zheng W.; Li J.; Qiu Z.; Xia Z.; Li W.; Yu L.; Chen H.; Chen J.; Chen Y.; Hu Z.; Zhou W.; Shao B.; Cui Y.; Xie, Q. Novel bis-(-)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property. *Toxicol Appl Pharmacol.* 2012, 264, 65-72.
- 3. Shi Z.; Zhang Q.; Jiang X. Pharmacokinetic behavior in plasma, cerebrospinal fluid and cerebral cortex after

www.sciforce.org

intranasal administration of hydrochloride meptazinol. *Life Sci.* 2005, 77, 2574-2583.

- 4. Rosseel MT, Bogaert MG, Belpaire FM. Meptazinol (Wy 22811), a new analgesic: preliminary pharmacokinetic data. *Curr Med Res Opin.* 1975, 3, 181-186.
- "Declaration of Helsinki." As amended by the 52nd World Medical Assembly (WMA). World Medical Association, Edinburgh, Scotland, October 2000.
- 6. Schuirmann, D. J. "A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability." *J Pharmacokinet Biopharm.* 1987, 15(6), 657-680.
- 7. "EEC-note for Guidance" Investigation on Bioavailability and Bioequivalence.
- Eurachem Guide. The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics, 1998.
- 9. The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics. Eurachem Guide, 1998.
- Guidance for Industry: Statistical approaches to Establishing Bioequivalence. U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Centre for Drug Evaluation and Research (CDER), January 2001.
- 11. Guidance for Industry: FDA Bioanalytical Method Validation Guidelines U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Centre for Drug Evaluation and Research (CDER), May 2001.
- Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products-General Considerations. U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Centre for Drug Evaluation and Research (CDER), March 2003.
- International Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline. Guidelines for Good Clinical Practice. May 1996.
- USP24-NF-19. The United States Pharmacopeia -The National Formulary *In vivo* Bioequivalence Guideline., United States Pharmacopeial Convention, Inc.: Rockville, MD, 2001.